Key Concepts 12.1 Introduction

Templates is one of the features added to
» Generic programming C++ recently. It is a new concept which
» Multiple parameters in class enable us to define generic classes and
templates functions and thus provides support for
> Fuh ction templates generic programming. Gener.'ic programming
. is an approach where generic types are used
» Template functions as parameters in algorithms so that they
» Member function templates work for a variety of suitable data types

» Class templates and data structures.
> Teml?late classes . A template can be used to create a family
> Multiple parameters in class of classes or functions. For example, a class
templates template for an array class would enable
» Overloading of template functions us to create arrays of various data types
» Non-type template arguments such as int array and float array.

Similarly, we can define a template for a
function, say mul(), that would help us create various versions of mul() for multiplying int,
float and double type values.

A template can be considered as a kind of macro. When an object of a specific type is
defined for actual use, the template definition for that class is substituted with the required
data type. Since a template is defined with a parameter that would be replaced by a specified
data type at the time of actual use of the class or function, the templates are sometimes
called parameterized classes or functions.

3600 Object-Oriented Programming with C++

|12.2 Class Templates

Consider a vector class defined as follows:

class vector
{
int *v;
int size;
public:
vector(int m) // create a null vector
{
v = new int[size = m];
for(int i=0; i<size; i++)
v[i]l = 0;
}
vector(int *a) // create a vector from an array
{
for(int i=0; i<size; i+t)
v[i] = alil;
}
int operator*(vector &y) // scalar product
{
int sum = 0;
for(int i=0; i<size; i++)
sum += this -> v[i] * y . v[i];
return sum;
}
}s

The vector class can store an array of int numbers and perform the scalar product of two
int vectors as shown below:

int main()

{
int x[3] = {1,2,3};
int y[3] = {4,5,6};
vector v1(3);
vector v2(3);

]

// Creates a null vector of 3 integers

vl = x; // Creates vl from the array x
vZ = y;

int R = vl * v2;

cout << "R = " << R;

return 0;

Templates ® 361

Now suppose we want to define a vector that can store an array of float values. We can
do this by simply replacing the appropriate int declarations with float in the vector class.
This means that we have to redefine the entire class all over again.

Assume that we want to define a vector class with the data type as a parameter and then
use this class to create a vector of any data type instead of defining a new class every time.
The template mechanism enables us to achieve this goal.

As mentioned earlier, templates allow us to define generic classes. It is a simple process

to create a generic class using a template with an anonymous type. The general format of a
class template is:

template<class 7>
class classname

{

// class member specification
// with anonymous type T
// wherever appropriate
Jy——

bs

The template definition of vector class shown below illustrates the syntax of a template:

template<class T>
class vector
{
T v; // Type T vector
int size;
public:
vector(int m)
{
v = new T [size = m];
for(int i=0; i<size; i++)
v[i] = 0;

vector(T* a)

for(int i=0; i<size, i++)

v[il = alil;
}

T operator*(vector &y)
{
T sum = 0;
for(int i=0; i<size; i++)
sum += this -> v[i] * y . v[il;
return sum;

3620 Object-Oriented Programming with C++

rote

The class template definition is very similar to an ordinary class definition except the
prefix template<class T> and the use of type T. This prefix tells the compiler that we
are going to declare a template and use T as a type name in the declaration. Thus, vector
has become a parameterized class with the type T as its parameter. T may be substituted
by any data type including the user-defined types. Now, we can create vectors for holding
different data types.

Example:
vector <int> v1(10); /] 10 element int vector
vector <float> v2(25); /! 25 element float vector

rnote

The type T may represent a class name as well. Example:

vector <complex> v3(5); // vector of 5 complex numbers

A class created from a class template is called a template class. The syntax for defining an
object of a template class is:

classname<type> objectname(arglist);

This process of creating a specific class from a class template is called instantiation. The
compiler will perform the error analysis only when an instantiation takes place. It is,
therefore, advisable to create and debug an ordinary class before converting it into a template.

Programs 12.1 and 12.2 illustrate the use of a vector class template for performing the
scalar product of int type vectors as well as float type vectors.

#include <iostream>
using namespace std;
const size = 3;

template <class T>
class vector
{
T* v; // type T vector
public:
vector()

{
(Contd)

Templates 0363

v = new T[size];
for(int i=0;i<size;i++)

v[i] =
vector(T* a)

for(int i=0;i<size;i++)
v[il = alils
}

T operator*(vector &y)

{
T sum = 03
for(int i=0;i<size;i++)
sum += this -> v[i] * y. v[1],
return sum;
}
}; ; »
int main()
{
int x[3] = {1,2,3};
int y[3]1 = {4,5,6};
vector <int> vl;
vector <int> vZ;
vl =
v2 = ¥;
int R = vl * vZ;
cout << “R = L << R << "\“Il;
return 0;
}

PROGRAM 12.1

The output of the Program 12.1 would be:

" ANOTHER EXAMPLE OF CLASS TEMPLATE
#include <iostream>

using namespace std;

const size = 3;
template <class T>

(Contd)

364e Object-Oriented Programming with C++

class vector

{
T* v; // type. T vector
public:
vector()
{
v = new T[size];
for(int i=0;i<size;i++)
v[i] = 0;
}
vector(T* a)
{
for(int i=0;i<size;i++)
vlil = a[il;
}
T operator*(vector 8y)
T sum = 0;
for(int i=0;i<size;i++)
- sum += this -> v[i] * y.v[i];
return sum; ‘
} : : :
}s
int main()
{ LT
float x[3] = {1.1,2.2,3.3});
float y[3] = {4.4,5.5,6.6};
vector <float> vl; A
vector <float> v2;
vl = x;
v2 = y;
float R = vl * v2;
cout << "R .= " << R << "\p";
return 0;
}

The output of the Program 12.2 would be:

R = 38.720001

PROGRAM 12.2

Templates 9 365

llZ.S Class Templates with Multiple Parameters

We can use more than one generic data type in a class template. They are declared as a
comma-separated list within the template specification as shown below:

template<class 71, class 72, .>
class classname

..... (Body of the class)

#include <iostream>

using namespace std;

template<class T1, class T2>

class Test
T1 a;
T2 b;
public:

Test(T1 x, T2 y)

{
a = X
b=y;

ipid show()
cout << a << " and " << b << "\n";
bs !
int main()

Test <float,int> testl (1.23,123);
Test <int,char> test2 (100,'W');

testl.show();
test2.show();

return 0;

PROGRAM 12.3

366 @- Object-Oriented Programming with C++

The output of Program 12.3 will be would be:

1.23 and 123
100 and W

|12.4 Function Templates

Like class templates, we can also define function templates that could be used to create a
family of functions with different argument types. The general format of a function template is:

template<class T>
returntype functioname (arguments of type T)

{

// Body of function
// with type T
// wherever appropriate

/] .
}

The function template syntax is similar to that of the class template except that we are
defining functions instead of classes. We must use the template parameter T as and when
necessary in the function body and in its argument list.

The following example declares a swap() function template that will swap two values of
a given type of data.

template<class T>
void swap(T&x, T&y)
{

T temp = x;
X =Y;
y = temp;

}

This essentially declares a set of overloaded functions, one for each type of data. We can
invoke the swap() function like any ordinary function. For example, we can apply the
swap() function as follows:

void f(int m,int n,float a,float b)

{
swap(m,n); // swap two integer values
swap(a,b); // swap two float values

/).,

Templates © 367

This will generate a swap() function from the function template for each set of argument
types. Program 12.4 shows how a template function is defined and implemented.

#include <icstrean>

using namespace std;

template <class T>
void swap{T &x, T 8y}

i

t .
T temp = x5
=¥
¥ o5 oLemp;

oid furndint myint n,fleat 2, ficat o)

cout << Yinoand n hafore swap: Y << m << ®

swap(m,n);

<< n << "\n";

cout << "moand n oafter swap: Y << m << " " << n << "\n";
cout << “a and b before swap: " << a << " " << b << "\n";
swan(a,bl;

cout << "3 and b after swap: " << a << " " << ph << "\n";

!

s

int main(}
{
1

fun({100,200,11.22,33.44);

return 0;

PROGRAM 12.4

The output of Program 12.4 would be:

m and n before swap: 100 200
m and n after swap: 200 100
a and b before swap: 11.22 33.439999
a and b after swap: 33.439999 11.22

Another function often used is sort() for sorting arrays of various types such as int and
double.The following example shows a function template for bubble sort:

368 @ Object-Oriented Programming with C++

template<class T>
bubble(T v[], int n)

{
for(int i=0; i<n-1; i++)
for(int j=n-1; i<j; j--)
;f(V[J] < v[j-11)
T temp = v[j];
v[il = v[i-1];
v[j-1] = temp;

}
Note that the swapping statements
T temp = v[il;
vlil = vli-11;
v[j-1] = temp;
may be replaced by the statement
swap(v[jl,v[i-11);
where swap() has been defined as a function template.
Here is another example where a function returns a value.
template<class T>
T max(T x, Ty)
{

}

return x>y ? x:y;

A function generated from a function template is called a template function. Program 12.5
demonstrates the use of two template functions in nested form for implementing the bubble
sort algorithm. Program 12.6 shows another example of application of template functions.

BUBBLE SORT -USING TEMPLATE Fi
#include <iostream>

using namespace std;

template<class T>
void bubble(T a[], int n)

(Contd)

Templates — 369

for(int i=0; i<n-1; i++)
for(int j=n-1; i<j; j--)
if(ali]l < ali-11)

swap(a[il.al[j-11); // calls template function
}

template<class X>
void swap(X &a, X &b)

{
X temp = a;
a = b;
b = temp;

}

int main()

{
int x[5] = {10,50,30,40,20};
float y[5] = {1.1,5.5,3.3,4.4,2.2};
bubble(x,5); // calls template function for int values
bubble(y,5); // calls template function for float values
cout << "Sorted x-array: l>';
for(int i=0; i<5; i++)
cout << x[i] << " "3
cout << endl;
cout << "Sorted y-array: ";
for(int j=0; j<b; j+t)
cout << y[i] << " "
cout <<-endl;

return 0;
}

PROGRAM 12.5

The output of Program 12.5 would be:

Sorted x-array: 10 20 30 40 50
Sorted y-array: 1.1 2.2 3.3 445.5

370e

#include <jostream>
#include <iomanip>
#include <cmath>

using namespace std;

template <class T>
void roots(T a,T b,T ¢)

{

T d = b*b - 4*a*c;

if() // Roots are equal
{
cout << "Rl = R2 = " << -b/(2*%a) << endl;
}
else if(d > 0) // Two real roots
{
cout << "Roots are real \n";
float R = sqrt(d);
float Rl = (-b+R)/(2*a);
float R2 = (-b-R)/(2*a);
cout << "Rl = " << Rl << " and ";
cout << "R2 = " << R2 << endl;
}
else // Roots are complex
{
cout << "Roots are complex \n";
float Rl = -b/(2*a);
float R2 = sqrt(-d)/(2*a);
cout << "Real part = " << Rl << endl;
cout << "Imaginary part = " << R2;
cout << endl;
}
}
int main()
{

cout << "Integer coefficients \n";
roots(1,-5,6);

cout << "\nFloat coefficients \n";
roots{1.5,3.6,5.0);

return 0;

Object-Oriented Programming with C++

PROGRAM 12.

Templates —e 371

The output of Program 12.6 would be:

integer coefficients
RooTS dre redi

Rl = 3 and RZ = 2
Float coefficients
Roots are complex

Real part = -1.2
Imaginary part = 1.375985

EZ.S Function Templates with Multiple Parameters

Like template classes, we can use more than one generic data type in the template statement,
using a comma-separated list as shown below:

r~temp1ate<class 71, class 72, .>
returntype functionname(arguments of types T1, T2,.)

..... (Body of function)

Program 12.7 illustrates the concept of using two generic types in template functions.

#include <iostream=
#include <string>

using namespace std;

template<ciass Tl, class 12>
void display(Tl x, T2 y)

{
COut << X << NN e y << H\nn;
}
int main()
i
1
display(1999, "EBG");
display(12.34, 1234);
return 0;
}

PROGRAM 12.7

372e Object-Oriented Programming with C++

The output of Program 12.7 would be:

1999 EBG
12.34 1234

L12.6 Overloading of Template Functions

A template function may be overloaded either by template functions or ordinary functions
of its name. In such cases, the overloading resolution is accomplished as follows:

1. Call an ordinary function that has an exact match.
2. Call a template function that could be created with an exact match.
3. Try normal overloading resolution to ordinary functions and call the one that matches.

An error is generated if no match is found. Note that no automatic conversions are applied
to arguments on the template functions. Program 12.8 shows how a tem plate function is
overloaded with an explicit function.

#include <iostream>
#include <string>

using namespace std;

template <class T>
void display(T x)
{

cout << "Template display: " << x << "\n";

}

void display(int x) // overloads the generic display()
cout << "Explicit display: " << x << "\n";

}

int main{)

{
display(100);
display(12.34);

display('C');

return 0;

! e e

PROGRAM 12.8

Templates -0 373

The output of Program 12.8 would be:

Explicit display: 100
Template display: 12.34
Template display: C

rnote

The call display(100) invokes the ordinary version of display() and not the template
version.

I 12.7 Member Function Templates

When we created a class template for vector, all the member functions were defined as
inline which was not necessary. We could have defined them outside the class as well. But
remember that the member functions of the template classes themselves are parameterized
by the type argument (to their template classes) and therefore these functions must be
defined by the function templates. It takes the following general form:

Template<class T>
returntype classname <T> :: functionname(arglist)

{

// Function body
/] oeeens

}

The vector class template and its member functions are redefined as follows:
// Class template

template<class T>
class vector
{
T* vy
int size;
public:
vector(int m);
vector(T* a);
T operator*(vector & y);

b

// Member function templates
template<class T>

3740 Object-Oriented Programming with C++

vector<T> :: vector{int m)

{
1
v = new T{size = m};
for(int 1=0; 1<size; 1++)
v[i] = 0;
}

template< class T>
vector<T> :: vector(T* a)

§

{
for{int i=0; i<size; 1++)

vlil = alil;

template< class T=»
T vector<T> :: operator*(vector & y)
{
T sum = 0;
for(int i = 0; i < size; i++)
sum += this -> v[i] * y.v[i];
return sum;

!

IIZ.S Non-Type Template Arguments

We have seen that a template can have mulliple arguments. it is also possible to use non-
type arguments. That iz, in addition to the type argument T, we can also use othier arguments
such as strings, function names, constant expressions and built-in types. Consider the
following example:

template<class T, int size>
class array

{
T a[size]; /) automatic arroy initialization
/]
1/ eee..

bs

This template supplies the size of the array as an argument. This implies that the size of
the array is known to the compiler at the compile time itself. The arguments must be
specified whenever a template class is created. Example:

array<int,10> al; // Array of 10 integers
array<float,5> aZ; // Array of 5 floats
array<char,20> a3; /7 String of size 20

The size is given as an argument to the template class.

a

A
[

Templates —375

SUMMARY

“ s!*r:;\'v‘"
M Yo

C++ supports a mechanism known as template to implement the concept of generic
programming.

Templates allows us to generate a family of classes or a family of functions to handle
different data types.

Template classes and functions eliminate code duplication for different types and thus
make the program development easier and more manageable.

We can use multiple parameters in both the class templates and function templates.
A specific class created from a class template is called a template class and the process
of creating a template class is known as instantiation. Similarly, a specific function
created from a function template 1s called a template function.

Like other functions, template functions can be overloaded.

Member functions of a class template must be defined as function templates using the
parameters of the class template.

We may also use non-type parameters such basic or derived data types as arguments
templates.

Key Terms

bubble sort parameterized classes
clagss template parameterized functions
display() swapping

explieit function swap(}

function template template

ganAaric Dregramming template class

instantiation template definition
momber function template template function
multiple parameters template parameter

5 T
overioading

tesmplate specification

v YY" IINTY
VVYYVYVYVYYYYYY

parameter templates

376 0—

Object-Oriented Programming with C++

rReview Questions

12.1
12.2

12.3
12.4
12.5

12.6

12.7

What is generic programming? How is it implemented in C++?

A template can be considered as a kind of macro. Then, what is the difference
between them?

Distinguish between overloaded functions and function templates.
Distinguish between the terms class template and template class.

A class (or function) template is known as a parameterized class (or function).
Comment.

State which of the following definitions are tllegal.
(a) template<class T>
class city

(b} template<class P, R, class S>
class city
{ . }

(c) template<class T, typename S>
class city
{ . }:

(d) template<class T, typename S$>
class city

(e) class<class T, int size=10>
class list

(f) class<class T = int, int size>
class list

Identify which of the following function template definitions are illegal.
(a) template<class A, B>
void fun(A, B)

(b) template<class A, class A>
void fun(A, A)

(c) template<class A>
void fun(A, A)
{ . }s

Templates

(d) template<class T, typename R>
T fun(T, R)
{ v b

{e) template<class A>
A fun(int *A)
{ }s

rDebugging Exercises

12.1 Identify the error in the following program.

12.2

#include <iostream.h>
class Test
{
int intNumber;
float floatNumber;

public:
Test()
{
intNumber = 0;
floatNumber = 0.0;
}
int getNumber()
{
return intNumber;
}
float getNumber()
{
return floatNumber;
}
bs

void main()

{
Test objTestl;
objTestl.getNumber();

}

Identify the error in the following program.

#include <iostream.h>

template <class Tl, class T2>

-0 377

Key Concepts 113.1 Introduction

We know that it is very rare that a program
works correctly first time. It might have
bugs. The two most common types of bugs
are logic errors and syntactic errors. The

They are known as exceptions. Exceptions
are run time anomalies or unusual
conditions that a program may encounter
while executing. Anomalies might include
conditions such as division by zero, access to an array outside of its bounds, or running out
of memory or disk space. When a program encounters an exceptional condition, it is important
that it is identified and dealt with effectively. ANSI C++ provides built-in language features
to detect and handle exceptions which are basically run time errors.

» Errors and exceptions logic errors occur due to poor understanding
» Throwing mechanism of the problem and solution procedure. The
> Multiple catchi syntactic errors arise due to poor
uiiple catching understanding of the language itself, We
> Rethrowing exceptions can detect these errors by using exhaustive
>» Exception handling mechanism debugging and testing procedures.
> Catching mechanism We often come across some peculiar
> Catching all exceptions problems other than logic or syntax errors.,
>

Restricting exceptions thrown

Exception handling was not part of the original C++. It is a new feature added to ANSI
C++. Today, almost all compilers support this feature. C++ exception handling provides a

Exception Handling —0 381

type-safe, integrated approach, for coping with the unusual predictable problems that arise
while executing a program.

IE.Z Basics of Exception Handling

Exceptions are of two kinds, namely, synchronous exceptions and asynchronous exceptions.
Errors such as "out-of-range index" and "over-flow" belong to the synchronous type exceptions.
The errors that are caused by events beyond the control of the program (such as keyboard
interrupts) are called asynchronous exceptions. The proposed exception handling mechanism
in C++ is designed to handle only synchronous exceptions.

The purpose of the exception handling mechanism is to provide means to detect and
report an "exceptional circumstance" so that appropriate action can be taken. The mechanism
suggests a separate error handling code that performs the following tasks:

Find the problem (Hit the exception).

Inform that an error has occurred (Throw the exception).
Receive the error information (Catch the exception).
Take corrective actions (Handle the exception).

L

The error handling code basically consists of two segments, one to detect errors and to
throw exceptions, and the other to catch the exceptions and to take appropriate actions.

|13.3 Exception Handling Mechanism

C++ exception handling mechanism is
basically built upon three keywords, namely,
try, throw, and catch. The keyword try is try block
used to preface a block of statements
{surrounded by braces) which may generate
exceptions. This block of statements is known
as try block. When an exception is detected,
it is thrown using a throw statement in the
try block. A catch block defined by the Exception
keyword catch 'catches' the exception object
'thrown' by the throw statement in the try
block, and handles it appropriately. The
relationship is shown in Fig. 13.1.

Detects and throws
an exception

catch block

Catches and handles
the exception

The catch block that catches an exception
must immediately follow the try block that
throws the exception. The general form of
these two blocks are as follows:

Fig. 131 & The block throwing exception |

382e Object-Oriented Programming with C++

t r,y
{
throw excepiion; /7 Block of statements which
..... // detects and throws an exception
I
catch(type arg) : /{ Catches exception

..... // Block of statements that
e // handles the exception

When the try block throws an exception, the program control leaves the try block and
enters the catch statement of the catch block. Note that exceptions are objects used to
transmit information about a problem. If the type of object thrown matches the arg type in
the catch statement, then catch block is executed for handling the exception. If they do not
match, the program is aborted with the help of the abort() function which is invoked by
defauit. When no exception is detected and thrown, the control goes to the statement
immediately after the catch block. That is, the catch block is skipped. This simple try-catch
mechanism is illustrated in Program 13.1.

#include <iostream>

using namespace std;
int main()
{
mtoa,. b
cout << "Enter values of a and b \n";
e o»> a;
cin o>e
int x = a-b;
try
{
if{x !'= 0)
{

(Contd;

Exception Handling 0383

cout << "Result(a/x) = " << a/x << "\n";
else // There is an exception
throw(x); // Throws int object
catch(int 1) // Catches the exception
{
}

cout << "Exception caught: x = " << x << "\n";

cout << "END";

return 0;

PROGRAM 13.1

The output of Program 13.1:

First Run
Enter Values of a and b
20 15
Result(a/x) = 4
END

Second Run
Enter Values of a and b
10 10
Exception caught: x = 0
END

Program detects and catches a division-by-zero problem. The output of first run shows a
successful execution. When no exception is thrown, the catch block is skipped and execution
resumes with the first line after the eatch. In the second run, the denominator x becomes
zero and therefore a division-by-zero situation occurs. This exception is thrown using the
object x. Since the exception object is an int type, the catch statement containing int type
argument catches the exception and displays necessary message.

Most often, exceptions are thrown by functions that are invoked from within the try
blocks. The point at which the throw is executed is called the throw point. Once an exception
is thrown to the catch block, control cannot return to the throw point. This kind of relationship
is shown in Fig. 13.2.

384 @ Object-Oriented Programming with C++

Throw point

Function that causes
an exception

Invoke
f .
try block unction
Throw Invokes a function that |
exception contains an exception
catch block

\ Catches and handies

\ .
the exception

Fig. 13.2 & Function invoked by try block throwing exception

The general format of code for this kind of relationship is shown below:

} type function(arg list) // Function with exception
E throw(object); // Throws exception
s }

try

{

ee.... Invoke function here

catch(type arg) // Catches exception
{

Exception Handling €385

rnote
C‘he try block is immediately followed by the catch block, irrespective of the location of

the throw point.

Program 13.2 demonstrates how a try block invokes a function that generates an exception.

// Throw point outside the try block

#include <iostream>
using namespace std;
void divide(int x, int y, int z)

{

cout << "\nWe are inside the function \n";

if((x-y) = 0) // It is OK
{
int R = z/(x-y);
cout << “"Result = " << R << "\n";
}
else // There is a problem
{
throw(x-y); // Throw point
}
}
int main()
{
try
{
cout << "We are inside the try block \n";
divide(10,20,30); // Invoke divide()
divide(10,10,20); // Invoke divide()
}
catch(int i) // Catches the exception
{ .
cout << "Caught the exception \n";
}
return 0;

PROGRAM 13.2

388 0 Object-Oriented Programming with C++

Program 13.3 shows a simple example where multiple catch statements are used to handle
various types of exceptions.

#include <iostream>

using namespace std;

void test(int x)

{
try
{
if(x == 1) throw x; // int
else
if(x == 0) throw 'x'; // char
else
if(x == -1) throw 1.0; // double
cout << "End of try-block \n";
}
catch(char ¢) // Catch 1
{
cout << "Caught a character \n";
}
catch(int m) // Catch 2
{ .
cout << "Caught an integer \n";
}
catch(double d) // Catch 3
{
cout << "Caught a double \n";
}
cout << "End of try-catch system \n\n";
}
int main()

cout << "Testing Multiple Catches \n";
cout << “x == 1 \n";

test(1);

cout << "x == 0 \n";

test(0);

cout << "x == 1 \n";

test(-1);

cout << "x == 2 \n";

test(2);

return 0;

PROGRAM 13.3

Exception Handling 0389

The output of the Program 13.3:

Testing Multiple Catches
X ==

Caught an integer

End of try-catch system

Caught a character
End of try-catch system

Caught a double
End of try-catch systemO

X == 2
End of try-block
End of try-catch system

The program when executed first, invokes the function test() with x = 1 and therefore
throws x an int exception. This matches the type of the parameter m in catch2 and therefore
catch2 handler is executed. Immediately after the execution, the function test() is again
invoked with x = 0. This time, the function throws 'x', a character type exception and therefore
the first handler is executed. Finally, the handler catch3 is executed when a double type
exception is thrown. Note that every time only the handler which catches the exception is
executed and all other handlers are bypassed.

When the try block does not throw any exceptions and it completes normal execution,
control passes to the first statement after the last catch handler associated with that try block.

role

try block does not throw any exception, when the test() is invoked with x = 2.

Catch All Exceptions

In some situations, we may not be able to anticipate all possible types of exceptions and
therefore may not be able to design independent catch handlers to catch them. In such
circumstances, we can force a catch statement to catch all exceptions instead of a certain
type alone. This could be achieved by defining the catch statement using ellipses as follows:

catch(...)

[

i
// Statements for processing
// all exceptions

3920— Object-Oriented Programming with C++

try
{
divide(10.5,2.0);
divide(Z0.0,0.0);
catch(double)
{

cout << "Caught double inside main \n¥;
cout << "End of main \n";

return Q;

PROGRAM 13.5

The output of the Program 13.5;

Inside main

Inside function
Division = 5,25
End of function

Inside function

Caught double inside function
Caught double inside main

End of main

When an exception is rethrown, it will not be caught by the same catch statement or any
other catch in that group. Rather, it will be caught by an appropriate catch in the outer
try/catch sequence only.

A catch handler itself may detect and throw an exception. Here again, the exception
thrown will not be caught by any catch statements in that group. It will be passed on to the
next outer try/catch sequence for processing.

lEJ Specifying Exceptions

It is possible to restrict a function to throw only certain specified exceptions. This is achieved
by adding a throw list clause to the function definition. The general form of using an
exception specification is:

type function(arg-list) throw (type-list)
{

...... Function body

Exception Handling —0 393

The type-list specifies the type of exceptions that may be thrown. Throwing any other
type of exception will cause abnormal program termination. If we wish to prevent a function
from throwing any exception, we may do so by making the type-list empty. That is, we must use

throw(); // Empty list
in the function header line.
f rote
A function can only be restricted in what types of exceptions it throws back to the try

block that called it. The restriction applies only when throwing an exception out of the
function (and not within a function).

Program 13.6 demonstrates how we can restrict a function to throw only certain types
and not all. :

 THROW RESTRICTIONS
#include <iostream>

using namespace std;

void test(int x) throw(int,double)
{

if(x == 0) throw 'x'; // char
else

if(x == 1) throw x; - /] int
else

if(x == -1) throw 1.0; // double

cout << "End of function block \n";

}

int main()
{
try
{ e
cout << "Testing Throw Restricticns \n";
cout << "x == 0 \n";
test(0);
cout << "x == 1 \n";
test(1);
cout << "x == -1 \n";
test(-1);
cout << "x == 2 \n";

(Contd)

396e Object-Oriented Programming with C++

13.10 State what will happen in the following situations:
(a) An exception is thrown outside a try block
(b) No catch handler matches the type of exception thrown
(¢) Several handlers match the type of exception thrown
(d) A catch handler throws an exception
(e) A function throws an exception of type not specified in the specification list
(D) ecatch(...) is the first of cluster of catch handlers
(g) Placing throw() in a function header line
(h) An exception rethrown within a catch block
13.11 Explain under what circumstances the following statements would be used:
(a) throw;
(b) void funl(float x) throw()
(c) catch(...)

I Debugging Exercises

13.1 Identify the error in the following program.

#include <iostream.h>
class Person
{

int age;
public:

Person()

{

}

Person(int i):age(i)
{
}

void getOccupation()
{
try

switch(age)
{
case 10:
throw ("Child");
case 20:
throw "Student";

Exception Handling -0 397

break;
case 30:
throw "Employee";
break;
}
}
}
void operator ++()
{
age+=10;
}

bs

void main()

{
Person objPerson(10);
objPerson.getOccupation();
++objPerson;
objPerson.getOccupation();
++objPerson;
objPerson.getOccupation();

}

13.2 Identify the error in the following program.

#include <iostream.h>

void callFunction(int 1)

throw 1;

throw 0;

void callFunction{char *n)
{
try
{
if(n)
throw "StringOK";

398 &

}
catch(char*

void main()
I

try
{

Object-Onented Programming with C++

else

throw "StringError";
name)
cout << name << " ;

callFunction("testString");
callFunction(1);
callFunction(0);

1

!

catch(int i)

/

COUt << i << non

}

’

catch(char *name)

{

cout << name << " ",

13.3 Identify the error in the following program.

class Mammal

{

public:
Mammai ()
{

1

class Human

i

{

#include <iostream.h>

Exception Handling €399

class Student : virtual public Human
i

b

class Employee : virtual public Human

f

{

s

void getObject()
{

t

throw Employee();

bs

void main()
Mammal m;
try

t

t

m.getObject();

\

}
catch(Mammal: :Human&)
{

cout << "Human ";

}
catch(Mammat::Studentd)
{

cout << "Student ",
}
catch(Mammal::Employeed)
{

cout << "Employee “;
}
catch(...)
{

cout << "A11",

400 Object-Oriented Programming with C++

13.4 Identify errors, if any, in the following statements.

(a) catch(int a, float b)

{...}
(b) try

{throw 100;};
(¢) try

{fun1()}

(d) throw a, b;
(e) void divide(int a, int b) throw(x, y)

(f) catch(int x, ..., float y)

(g) try
{throw x/y;}
(h) try
{if(!'x) throw x;}
catch(x)
{cout << "x is zero \n";}

l Programming Exercises

13.1 Write a program containing a possible exception. Use a try block to throw it and
a catch block to handle it properly.

13.2 Write a program that illustrates the application of multiple catch statements.

13.3 Write a program which uses catch(...) handler.

13.4 Write a program that demonstrates how certain exception types are not allowed
to be thrown.

13.5 Write a program to demonstrate the concept of rethrowing an exception.

13.6 Write a program with the following:
(a) A function to read two double type numbers from keyboard
(b) A function to calculate the division of these two numbers
(c) A try block to throw an exception when a wrong type of data is keyed in
(d) A try block to detect and throw an exception if the condition "divide-by-zero”

oceurs

(e) Appropriate catch block to handle the exceptions thrown

13.7 Write a main program that calls a deeply nested function containing an exception.
Incorporate necessary exception handling mechanism.

